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Introduction

Linear code

A linear code of dimension k and length n is a vector subspace of dimension k of Fn
q.

message 𝑐 
error 𝑒

𝑒 +𝑐 

vector of length 𝑘 vector of length 𝑛

message 

Classical metric for codes: Hamming metric.
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Rank metric

Support in rank metric

If v = (v1, . . . , vn) ∈ Fn
qm , the support of v in rank metric is the Fq-vector subspace of Fqm spanned

by its coefficients:
supp(v) =< v1, . . . , vn >Fq .

Rank weight

If v ∈ Fn
qm , the rank weight of v , denoted wR(v), is the dimension of its support.

Remark : wR(v) = rank(MatB(v)), for every B Fq-basis of Fqm .

Rank metric

The map
dR : Fn

qm × Fn
qm → N

(v ,w) 7→ wR(v − w)
is called rank distance.

Rank metric code

A rank metric code of length n is an Fqm -linear subspace of Fn
qm equipped with the rank metric.
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Sum-rank metric

Ambient space for the sum rank metric: F := Fn1
qm × Fn2

qm × · · · × Fnl
qm .

Sum-rank weight

If x = (x1, . . . , x l) ∈ F, the sum-rank weight of x is wSR(x) =
l∑

i=1

wR(x i ).

Sum-Rank metric

The map
dR : F× F → N

(v ,w) 7→ wSR(v − w)
is called sum-rank distance.

Sum-rank metric code

A sum-rank metric code is an Fqm -linear subspace of F equipped with the sum-rank metric.

Remark: Both a generalization of the Hamming metric and the rank metric.
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Introduction

2 families of codes in rank metric with a decoding algorithm :

LRPC codes

Gabidulin codes.

We introduce a new family: the q-CRT codes.

Different parameter constraints than those of Gabidulin codes.

Decoding algorithm for special cases.

Codes in rank metric, also adapted for the sum rank-metric: good mix to extend the notion of
local decodability in these metrics.

0 1 1 1 0 0 1 0 1 0 1 1 01 0 0 1 1
codeword message

Locally decodable code:

0 1 1 0 1 0 1 0 1 0 1 1 1

recover 
the 
message

1 0 0 1 1
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Introduction

f1, . . . , fs ∈ Fq[x ] two by two coprime.

Consider
φ : Fq[x ] → Fq [x]

<f1>
× · · · × Fq [x]

<fs>

P 7→ (π1(P), . . . , πs(P))
, where πi (P) = P mod fi .

Chinese Remainder Theorem Code (CRT code)

The Chinese Remainder Theorem Code over Fq[x ] associated to f1, . . . , fs of dimension k is the set
φ(Fq[x ]<k).

Hamming metric: decoding algorithm based on key equations 1.

1On Polynomial Remainder Codes, Jiun-Hung Yu and Hans-Andrea Loeliger, In: CoRR, 2012.
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1 Chinese Remainder Theorem for linearised polynomials

2 q-CRT codes

3 Decoding of a special case

4 Decoding of a wider class
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Linearised polynomials [Ore33]

Linearised polynomials

The set Fqm ⟨X q⟩ =

{
A(X ) =

dA∑
i=0

aiX
qi , ai ∈ Fqm , dA ∈ N

}
is the set of linearised polynomials, or

q-polynomials.

If P ∈ Fqm ⟨X q⟩, ζ 7−→ P(ζ) is a Fq-linear map.

Product of A,B ∈ Fqm ⟨X q⟩ : (A ◦ B)(X ) = A(B(X )) ∈ Fqm ⟨X q⟩.

The set (Fqm ⟨X q⟩,+, ◦) is a non-commutative Fqm -algebra.

Proposition

The set of linearised polynomials is a right euclidean ring.

There exists algorithms to compute (left) LCM, (right) GCD and Bézout relations.
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Chinese Remainder Theorem and its lifting (with 2 polynomials)

F := (f1, f2) ∈ (Fqm ⟨X q⟩)2, n := degq(f1) + degq(f2).
Suppose f1 and f2 are coprime (i.e. f1 ∧r f2 = X ).

Theorem

Denote πi (P) the rest of P of the right division by fi . The map

φF :
Fqm ⟨Xq⟩
<f1∨l f2>

→ Fqm ⟨Xq⟩
<f1>

× Fqm ⟨Xq⟩
<f2>

P 7→ (π1(P), π2(P))

is an isomorphism.

Let S1 and S2 such that S1 ◦ f1 + S2 ◦ f2 = X .

Proposition

Let P ∈ Fqm ⟨X q⟩<n. Denote by π3(·) the remainder of the right division by f1 ∨l f2.
Then

π3(π2(P) ◦ S1 ◦ f1 + π1(P) ◦ S2 ◦ f2) = P.

Camille Garnier Linearised Chinese Remainder Codes 10 october 2025 10 / 32
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Why we need more hypothesis for the lifting with more than two polynomials

Even if f1, f2 and f3 are two by two coprime, then f1 ∨l f2 is not always coprime with f3.

↪→ Example: ζ and ξ ∈ Fqm Fq-independent.

f1 = X q − ζq−1X , f2 = X q − ξq−1X and f3 = X q − (ζ + ξ)q−1X .
ζ ∈ ker(f1), ξ ∈ ker(f2), ζ + ξ ∈ ker(f1 ∨l f2) and therefore f3 = X q − (ζ + ξ)q−1X divides f1 ∨l f2 on the
right.

We need to suppose that f 3 is coprime with f 1 ∨l f 2.
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Chinese Remainder Theorem and its lifting (with more than two polynomials)

F := (f1, . . . , fs) ∈ (Fqm ⟨X q⟩)s , n :=
∑s

i=1 degq(fi ).
Suppose that for all i ∈ {1, · · · , s} fi ∧r (∨l

j ̸=i
fj ) = X .

Theorem

The map

φF :
Fqm ⟨Xq⟩

<
s
∨l
i=1

fi>
→ Fqm ⟨Xq⟩

<f1>
× · · · × Fqm ⟨Xq⟩

<fs>

P 7→ (π1(P), . . . , πs(P))

is an isomorphism.

Let S1,i and S2,i such that S1,i ◦
(
∨l
j ̸=i

fj
)
+ S2,i ◦ fi = X .

Proposition (Gaborit, G., Ruatta)

Let P ∈ Fqm ⟨X q⟩<n. Denote π(·) the remainder of the remainder division by
s
∨l
i=1

fi .

We have P = π
( s∑
i=1

πi (P) ◦ S1,i ◦ ∨l
j ̸=i

fj
)
.
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q-CRT codes (Gaborit, G., Ruatta)

k < n, A ∈ Fqm ⟨X q⟩ (such that degq(A) + k < n). Denote α = degq(A).

φF : P 7→ (π1(P), . . . , πs(P))

MA : P 7−→ P ◦ A

q-Chinese Remainder Theorem code

The q-Chinese Remainder Theorem code associated to k, A and F = (f1, · · · , fs), of dimension k and length
n, is C = (φF ◦MA)(Fqm ⟨X q⟩<k ).

length 𝑛

𝑃 𝜋! 𝑃 ∘ 𝐴  𝜋" 𝑃 ∘ 𝐴  …
𝜑#𝑀$ 𝑃 ∘ 𝐴

length 𝑘 + 	αlength 𝑘

message:  𝑃 ∈ 𝔽%! < 𝑋% >&' codeword
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Role of A

Role of A = control of the minimum distance.

Example: If P = X , and A = X , φF (P ◦ A) = (X , . . . ,X ) −→ codeword of rank 1.

Remark: We must have degq(A) + k < n to recover exactly P ◦ A when we lift φF (P ◦ A).

Denote wR(A) the dimension of the Fq-space spanned by the coefficients of A.

Conjecture (Gaborit, G., Ruatta)

Suppose that for all i ∈ {1, . . . , s}, fi ∈ Fq⟨X q⟩, and that degq(A) ⩽ min(degq(fi )). Then the minimum
distance of C is wR(A), if for every P ∈ Fqm ⟨X q⟩ dim(supp(P ◦ A)) ⩾ wR(A)
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Link with Gabidulin Codes

(g1, . . . , gn) ∈ Fn
qm Fq-linearly independent over Fqm .

Suppose fi := X q − gq−1
i X ∈ Fqm ⟨X q⟩ for all i ∈ {1, . . . , n}.

Let A ∈ Fqm ⟨X q⟩, corresponding to an inversible map.

The code C is the image of Fqm ⟨X q⟩<k by the application

Fqm ⟨X q⟩ → Fqm ⟨Xq⟩
<f1>

× · · · × Fqm ⟨Xq⟩
<fn>

P 7→ (P ◦ A mod f1, . . . ,P ◦ A mod fn) = (g−1
1 (P ◦ A)(g1)X , . . . , g−1

n (P ◦ A)(gn)X ).

Proposition (Gaborit, G., Ruatta)

C = {(g−1
1 (P ◦ A)(g1), . . . , g−1

n (P ◦ A)(gn)), P ∈ Fqm ⟨X q⟩<k}

= {c · Diag(g−1
1 , . . . , g−1

n ), c ∈ Gabk(A(g1), . . . ,A(gn))}

= Gabk(A(g1), . . . ,A(gn)) · Diag(g−1
1 , . . . , g−1

n ).
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A simple example

Example:

Ambient space: Fqm = Fq4

A = a0X + a1X
q + a2X

q2

f1 = X q3 , f2 = X q4 − X

Bézout relation: X q3 ◦ X q − (X q4 − X ) ◦ X = X .

Let P ∈ Fq4⟨X q⟩<4 (k = 4).

Division of P ◦ A by f1 : projection of P ◦ A on Fqm ⟨X q⟩<3.

Division of P ◦ A by f2 : replacing of X q4 by X in the expression of P ◦ A.

Generator matrix : 
a0 a1 a2 a0 a1 a2 0
0 aq0 aq1 0 aq0 aq1 aq2
0 0 aq

2

0 aq
2

2 0 aq
2

0 aq
2

1

0 0 0 aq
3

1 aq
3

2 0 aq
3

0


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A special case: moduli with coefficients in Fq

Suppose F = (f1, · · · , fs) ∈ Fq⟨X q⟩.

Denote Ψ the lifting of the Chinese Remainder Theorem.

length 𝑛

𝑃 𝜋! 𝑃 ∘ 𝐴  𝜋" 𝑃 ∘ 𝐴  …
𝜑#

𝑐

𝑀$ 𝑃 ∘ 𝐴

length 𝑘 + 	αlength 𝑘
Ψ

e ∈ Fn
qm , y = c + e .

E := Ψ(e), and Y := Ψ(y).

+ 𝐸!

𝐸"

length 𝑘 + 	α

length	𝑛

Ψ
𝑦 = 𝑐 + 𝑒𝑃 ∘ 𝐴

0
⋮
0
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Computing the support of the lifting of the error

+ 𝐸!

𝐸"

length 𝑘 + 	α

length	𝑛

Ψ
𝑦 = 𝑐 + 𝑒𝑃 ∘ 𝐴

0
⋮
0

We immediately deduce E2 from the second block.

y(property of rank metric codes)

We can then use E2 to deduce supp(E).
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Computing the support of the lifting of the error

Suppose e ∼ U .
Let r ∈ {1, . . . ,min(m, n − α− k)}.

Proposition (Gaborit, G., Ruatta)

Knowing that wR(E) = r , we have supp(E2) = supp(E) with probability

qr(k+α)
r−1∏
i=0

(qn−k−α − qi )

(qn − qi )
.

Number of matrices with coefficients in Fq of size n ×m of rank r :

r−1∏
i=0

(qm − qi )(qn − qi )

qr − qi
.

This probability decreases when r increases.
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Computing the support of the lifting of the error

Suppose F = (f1, · · · , fs) ∈ Fq⟨X q⟩.

Proposition (Gaborit, G., Ruatta)

We have
supp(E) ⊂ supp(e).

Therefore, if wR(e) ⩽⩽⩽ r , then wR(E) ⩽⩽⩽ r .

If wR(e) ⩽ r ⩽ n − α− k, the probability that supp(E2) = supp(E) is lower bounded by

qr(k+α)
r−1∏
i=0

(qn−k−α − qi )

(qn − qi )
.

↪→ We recover the support of the lifting of the error using only the second block, with high
probability.
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Computing the support of the lifting of the error

Proposition (Gaborit, G., Ruatta)

We have
supp(E) ⊂ supp(e).

Proof: We use the fact that:

If g ∈ Fqm ⟨X q⟩ and f ∈ Fq⟨X q⟩ are such that supp(g) ⊂ S , with S a Fq vector subspace of Fqm ,
then supp(g ◦ f ) ⊂ S .

If g ∈ Fqm ⟨X q⟩, and f ∈ Fq⟨X q⟩, supp(π(g)) ⊂ supp(g), where π(g) is the remainder in the right
division by f .

We have

E = π
( s∑

i=1

πi (e) ◦ S1,i ◦ ∨l
j ̸=i

fj
)
.

Since for all i ∈ {1, · · · , s}, fi ∈ Fq⟨X q⟩, we have ∨l
j ̸=i

fj ∈ Fq⟨X q⟩, and S1,i ∈ Fq⟨X q⟩. For every

i ∈ {1, · · · , s}, we have supp(πi (e) ◦ S1,i ◦ ∨l
j ̸=i

fj) ⊂ supp(e). Therefore supp(E ) ⊂ supp(e).
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Computing the lifting of the error

MA(Fqm ⟨X q⟩<k) = {P ◦ A, P ∈ Fqm ⟨X q⟩<k} −→ code of length k + α and dimension k over Fqm .

H ∈ Mα×(k+α)(Fqm ) a parity check matrix of MA(Fqm ⟨X q⟩<k).

We compute:

+

𝑘 +  α

𝑃 ∘ 𝐴

𝑘 +  α

×

𝑘 +  α

𝐻

α

𝐸1 = 𝐻 × 𝐸1
𝑠 : =

We solve the system s = H × E1, using supp(E) (as LRPC codes decoding 2).
−→ system with r(k +α) unknows and mα equations over Fq. We can solve it if r < mα

k+α
.

2Low Rank Parity Check Codes: New Decoding Algorithms and Applications to Cryptography, Nicolas Aragon, Philippe
Gaborit, Adrien Hauteville, Olivier Ruatta, Gilles Zémor, In: IEEE Transactions on Information Theory, 2019.
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Computing the lifting of the error

MA(Fqm ⟨X q⟩<k) = {P ◦ A, P ∈ Fqm ⟨X q⟩<k} −→ code of length k + α and dimension k over Fqm .

H ∈ Mα×(k+α)(Fqm ) a parity check matrix of MA(Fqm ⟨X q⟩<k).

We compute:

+

𝑘 +  α

𝑃 ∘ 𝐴

𝑘 +  α

×

𝑘 +  α

𝐻

α

𝐸1 = 𝐻 × 𝐸1
𝑠 : =

We solve the system s = H × E1, using supp(E) (as LRPC codes decoding 2).
−→ system with r(k +α) unknows and mα equations over Fq. We can solve it if r < mα

k+α
.

2Low Rank Parity Check Codes: New Decoding Algorithms and Applications to Cryptography, Nicolas Aragon, Philippe
Gaborit, Adrien Hauteville, Olivier Ruatta, Gilles Zémor, In: IEEE Transactions on Information Theory, 2019.
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Decoding algorithm

+ 𝐸!

𝐸"

length 𝑘 + 	α

length	𝑛

Ψ
𝑦 = 𝑐 + 𝑒𝑃 ∘ 𝐴

0
⋮
0

Algorithm Decoding algorithm

Input: y = c + e, where c ∈ C, and wr (e) ⩽
min( mα

k+α
, n − k − α).

Output: P ∈ Fqm ⟨X q⟩k such that y − φF (P ◦ A) ⩽
wr (e), or failure.

1: Compute Y := Ψ(y) ∈ Fqm ⟨X q⟩.
2: From Y , deduce E2, and compute supp(E2).
3: Using supp(E2), compute E1 by linear algebra.
4: Deduce P ◦ A, by computing Y − E1 − E2.
5: Compute the right division of P ◦ A by A.

Polynomial-time algorithm.

Dominant cost: linear algebra over Fq.

Can output a codeword even beyond the unique decoding radius.
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Success probability
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probability of success
x = m

k +

The probability of success is close to one for all rank weights that the algorithm can decode.

Camille Garnier Linearised Chinese Remainder Codes 10 october 2025 26 / 32



Chinese Remainder Theorem for linearised polynomials q-CRT codes Decoding of a special case Decoding of a wider class Conclusion

Success probability

0 10 20 30 40
Rank weight of the error

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ilit

y 
of

 su
cc

es
s

Probability of success of the algorithm and bound given
by the linear system, for n = 70, k = 15, = 14, q = 2, m = 30

probability of success
x = m

k +

x = n k
2

0 10 20 30 40
Rank weight of the error

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ilit

y 
of

 su
cc

es
s

Probability of success of the algorithm and bound given
by the linear system, for n = 70, k = 15, = 14, q = 2, m = 60

probability of success
x = m

k +

x = n k
2

0 10 20 30 40
Rank weight of the error

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ilit

y 
of

 su
cc

es
s

Probability of success of the algorithm and bound given
by the linear system, for n = 70, k = 15, = 14, q = 2, m = 90

probability of success
x = m

k +

x = n k
2

−→ The value of m allows to adjust the bound given by the linear system.
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Simple codes

A := MA(Fqm ⟨X q⟩<k) = {P ◦ A, P ∈ Fqm ⟨X q⟩<k}, C the q-CRT code associated to
F = (f1, · · · , fs) ∈ Fq⟨X q⟩.

Consider

Ln : Fqm ⟨X q⟩<n → Fn
qm∑n−1

i=0 piX
qi 7→ (p0, . . . , pn−1)

.

Denote A0 = Ln(A).

A generator matrix of A0 : G =
(
M | 0k×(n−(k+α))

)
, where M ∈ Fk×(k+α)

qm (simple code 3).

We have (Ln ◦Ψ)(C) = A0, and Ln ◦Ψ is an isometry for the rank metric.
Therefore, C is a simple code.

3Identity-Based Encryption from Codes with Rank Metric, Philippe Gaborit, Adrien Hauteville, Duong Hieu Phan,
Jean-Pierre Tillich, In: Advances in Cryptology - CRYPTO 2017
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Decoding of a wider class

Suppose F = (f1, · · · , fs) ∈ Fq l ⟨X q⟩, where l < m is small.

Same decoding algorithm, but changes in the bound: Indeed, supp(E) ⊈ supp(e).

We have
supp(E) ⊂ supp(e) · Fql ,

and then
dim(supp(E)) ⩽ wr (e) · l .

Proposition (Gaborit, G., Ruatta)

Knowing that wr (E) = rl , we have supp(E2) = supp(E) with probability

ql·r·(k+α)
lr−1∏
i=0

qn−(k+α) − qi

qn − qi
.

If wR(e) ⩽ r , the probability of success of the decoding algorithm is lower bounded by the one above.
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Conclusion

New family of rank metric codes.

Based on Chinese Remainder Theorem for linearised polynomials.

Probabilistic decoding algorithm for special cases, in polynomial time.

Open questions and further work:

Deterministic decoding algorithm, with key equation.

Decoding algorithm for the general case.

Study of their local properties: local testability and local decodability (in sum-rank metric, and
rank metric).

Thank you for your attention !

See hal-05062636 : ”Linearized Polynomial Chinese remainder codes”.
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