The Tangent Space Attack

Axel Lemoine^{1,2}

October 3, 2025

- 1. Inria Paris, France
- 2. DGA, France

Plan

McEliece cryptosystem

The notion of quadratic hull

Weil restriction

A new attack against high-rate alternant codes

Plan of this Section

McEliece cryptosystem

The notion of quadratic hull

Weil restriction

A new attack against high-rate alternant codes

The decoding problem

Definition 1 (Linear code)

An $[n, k]_q$ -linear code \mathscr{C} is a linear subspace of \mathbb{F}_q^n :

$$\mathscr{C} = \{ \boldsymbol{m} \cdot \boldsymbol{G} \mid \boldsymbol{m} \in \mathbb{F}_q^k \} = \{ \boldsymbol{x} \in \mathbb{F}_q^n \mid \boldsymbol{H} \cdot \boldsymbol{x}^\top = 0 \}.$$

Problem (Decoding problem)

- Input: \mathscr{C} an $[n, k]_q$ -code, y = c + e with $c \in \mathscr{C}$ and |e| = t;
- Goal: recover c.

The first code-based cryptosystem [McEliece, 1978]

Public key	gen. mat. $m{G}_{ ext{pub}} \in \mathbb{F}_q^{k imes n}$ of an $[n,k]_q$ -code \mathscr{C}
Private key	Efficient decoding algorithm derived from a structured gen. mat. $m{\mathcal{G}}_{\mathrm{priv}}$ of \mathscr{C}
Encryption	$ extbf{ extit{m}} \longmapsto extbf{ extit{m}} extbf{ extbf{G}}_{ ext{pub}} + extbf{ extit{e}} ext{ where } extbf{ extit{e}} \overset{\$}{\leftarrow} \mathbb{F}_q^n, \; extbf{ extit{e}} = t$
Decryption	Performed by a decoding algorithm using the <code>hidden</code> structure of $G_{ m priv}$

Figure 1: Generic McEliece cryptosystem

First example: GRS codes

Definition 2 (GRS codes)

$$\mathsf{GRS}_r(\mathbf{x}, \mathbf{y}) \stackrel{\mathsf{def}}{=} \{ (y_1 f(x_1), \dots, y_n f(x_n)) \mid f \in \mathbb{F}_q[X]_{< r} \}.$$
 A generator matrix is

$$\operatorname{Vand}_{r}(\mathbf{x}, \mathbf{y}) = \begin{pmatrix} y_{1} & y_{2} & \dots & y_{n} \\ y_{1}x_{1} & y_{2}x_{2} & \dots & y_{n}x_{n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{1}x_{1}^{r-1} & y_{2}x_{2}^{r-1} & \dots & y_{n}x_{n}^{r-1} \end{pmatrix}.$$

- Private key: $(x, y) \implies$ Welch-Berlekamp algorithm;
- Public key: $G = P \cdot \operatorname{Vand}_r(x, y)$ where $P \stackrel{\$}{\leftarrow} GL_r(\mathbb{F}_q)$.

[SS92]: This turns out to be insecure...

Alternant codes

Subfield-subcodes of GRS codes.

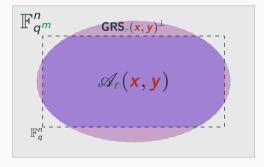


Figure 2: Alternant code

Definition 3 (Alternant codes)

$$\mathscr{A}_r(\mathbf{x}, \mathbf{y}) \stackrel{\mathsf{def}}{=} \mathsf{GRS}_r(\mathbf{x}, \mathbf{y})^{\perp} \cap \mathbb{F}_q^n$$

- dim $\mathscr{A}_r(\mathbf{x}, \mathbf{y}) \stackrel{\text{w.h.p}}{=} n rm;$
- $(x, y) \implies Decoding algorithm$

Definition 4 (Goppa codes)

Let $\Gamma \in \mathbb{F}_{q^m}[X]$ such that $\deg \Gamma = r$ and $\Gamma(x_i) \neq 0, \ i = 1, \dots, n$.

$$\mathscr{G}(\mathbf{x}, \Gamma) \stackrel{\mathsf{def}}{=} \mathscr{A}_r(\mathbf{x}, \mathbf{y}), \text{ with } y_i = \Gamma(x_i)^{-1}.$$

Recovering the structure of an alternant code

Problem (Key recovery problem)

- Input: $\mathbf{H}_{\text{pub}} \in \mathbb{F}_q^{rm \times n}$ be a partity-check matrix of $\mathscr{C} = \mathscr{A}_r(\mathbf{x}, \mathbf{y})$;
- Goal: recover $G \in \mathbb{F}_{q^m}^{r \times n}$ a generator matrix of $GRS_r(x, y)$.

Plan of this Section

McEliece cryptosystem

The notion of quadratic hull

Weil restriction

A new attack against high-rate alternant codes

Plan

McEliece cryptosystem

The notion of quadratic hull

Unusual behavior of GRS codes

From GRS codes to alternant codes

Weil restriction

A new attack against high-rate alternant codes

The square distinguisher

Definition 5 (Componentwise product)

Given
$$\mathbf{a}, \mathbf{b} \in \mathbb{F}_q^n$$
, $\mathbf{a} \star \mathbf{b} \stackrel{\text{def}}{=} (a_1 b_1, \dots, a_n b_n)$.
If $\mathscr{C}, \mathscr{D} \subset \mathbb{F}_q^n$ are two codes, $\mathscr{C} \star \mathscr{D} \stackrel{\text{def}}{=} \operatorname{Span}_{\mathbb{F}_q} \{ \mathbf{c} \star \mathbf{d} \mid (\mathbf{c}, \mathbf{d}) \in \mathscr{C} \times \mathscr{D} \}$.
 $\mathscr{C}^{\star 2} \stackrel{\text{def}}{=} \mathscr{C} \star \mathscr{C}$.

[CCMZ15]
$$\dim \mathscr{C}^{\star 2} = \begin{cases} \min\left\{\binom{\dim \mathscr{C}+1}{2}, n\right\} & \text{if } \mathscr{C} \text{ is random,} \\ \min\left\{2\dim \mathscr{C}-1, n\right\} & \text{if } \mathscr{C} \text{ is a GRS code.} \end{cases}$$

Indeed: $(yx^i) \star (yx^j) - (yx^k) \star (yx^l) = 0$ whenever i + j = k + l.

Quadratic hull

Let
$${\pmb G}=({\pmb g}_{\pmb 1}|\dots|{\pmb g}_n)\in {\mathbb F}_q^{k\times n}$$
 a gen. mat of ${\mathscr C}$ and ${\pmb S}={\mathbb F}_q[x_1,\dots,x_k]=\bigoplus_{d\geqslant 0}{\pmb S}_d$.

Definition 6 (Quadratic hull [Ran20])

- Algebraic view: $I_2(\mathbf{G}) \stackrel{\text{def}}{=} \{ f \in \mathbf{S}_2 \mid f(\mathbf{g_1}) = \ldots = f(\mathbf{g_n}) = 0 \}.$
- Geometric view: $V_2(\mathbf{G}) \stackrel{\text{def}}{=} \{ \mathbf{v} \in \mathbb{F}_q^k, \ \forall f \in \mathit{I}_2(\mathbf{G}), \ f(\mathbf{v}) = 0 \}.$

Quadratic hull

Let
$${\pmb G}=({\pmb g_1}|\dots|{\pmb g_n})\in \mathbb{F}_q^{k\times n}$$
 a gen. mat of $\mathscr C$ and ${\pmb S}=\mathbb{F}_q[x_1,\dots,x_k]=\bigoplus_{d\geqslant 0}{\pmb S}_d$.

Definition 6 (Quadratic hull [Ran20])

- Algebraic view: $I_2(\mathbf{G}) \stackrel{\text{def}}{=} \{ f \in \mathbf{S}_2 \mid f(\mathbf{g}_1) = \ldots = f(\mathbf{g}_n) = 0 \}.$
- Geometric view: $V_2(\mathbf{G}) \stackrel{\mathsf{def}}{=} \{ \mathbf{v} \in \mathbb{F}_q^k, \ \forall f \in I_2(\mathbf{G}), \ f(\mathbf{v}) = 0 \}.$

Proposition 7

• dim $I_2(\mathbf{G}) = \binom{k+1}{2} - \dim \mathscr{C}^{*2}$.

Quadratic hull

Let
$${\pmb G}=({\pmb g_1}|\dots|{\pmb g_n})\in \mathbb{F}_q^{k\times n}$$
 a gen. mat of $\mathscr C$ and ${\pmb S}=\mathbb{F}_q[x_1,\dots,x_k]=\bigoplus_{d\geqslant 0}{\pmb S}_d$.

Definition 6 (Quadratic hull [Ran20])

- Algebraic view: $I_2(\mathbf{G}) \stackrel{\text{def}}{=} \{ f \in \mathbf{S}_2 \mid f(\mathbf{g_1}) = \ldots = f(\mathbf{g_n}) = 0 \}.$
- Geometric view: $V_2(\mathbf{G}) \stackrel{\mathsf{def}}{=} \{ \mathbf{v} \in \mathbb{F}_q^k, \ \forall f \in I_2(\mathbf{G}), \ f(\mathbf{v}) = 0 \}.$

Proposition 7

- dim $I_2(\mathbf{G}) = \binom{k+1}{2} \dim \mathscr{C}^{*2}$.
- Let $G' = P \cdot G$ be another generator matrix of \mathscr{C} .
 - **Alg.** $I_2(G) = \{ f^P \mid f \in I_2(G') \}$, where $f^P \stackrel{\text{def}}{=} f((x_1, \dots, x_k)P^\top)$.
 - Geom. $V_2(G') = \{P \cdot v^\top \mid v \in V_2(G)\}.$

GRS codes and the rational normal curve

Let
$$\mathscr{C} = \mathsf{GRS}_r(\mathbf{x}, \mathbf{y}) \subset \mathbb{F}_q^n$$
, and let $\mathbf{G} = \mathrm{Vand}_r(\mathbf{x}, \mathbf{y})$.

Theorem 8

- $I_2(G)$ is spanned by $\{x_ix_j x_kx_l \mid i + j = k + l\};$
- dim $I_2(\mathbf{G}) = \binom{r-1}{2}$;
- $V_2(G) = \{(y, xy, x^2y, \dots, x^{r-1}y) \mid (x, y) \in \mathbb{F}_q \times \mathbb{F}_q\}.$

The columns of G lie on the rational normal curve!

Plan

McEliece cryptosystem

The notion of quadratic hull

Unusual behavior of GRS codes

From GRS codes to alternant codes

Weil restriction

A new attack against high-rate alternant codes

Generator matrix of $\mathscr{A}_r(x,y)^{\perp}$ (1)

Let
$$\mathbb{F}_{q^m} = \mathbb{F}_q[\alpha]$$
. Since $\mathscr{A}_r(\mathbf{x}, \mathbf{y}) = (\mathsf{GRS}_r(\mathbf{x}, \mathbf{y})^{\perp}) \cap \mathbb{F}_q^n$,
$$\mathscr{A}_r(\mathbf{x}, \mathbf{y}) = \left\{ \mathbf{c} \in \mathbb{F}_q^n \mid \begin{pmatrix} y_1 & \dots & y_n \\ \vdots & \ddots & \vdots \\ y_1 x_1^{r-1} & \dots & y_n x_n^{r-1} \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} = 0 \right\}.$$

Generator matrix of $\mathscr{A}_r(x,y)^{\perp}$ (1)

Let $\mathbb{F}_{q^m} = \mathbb{F}_q[\alpha]$. Since $\mathscr{A}_r(\mathbf{x}, \mathbf{y}) = (\mathsf{GRS}_r(\mathbf{x}, \mathbf{y})^{\perp}) \cap \mathbb{F}_q^n$,

$$\mathscr{A}_r(\mathbf{x},\mathbf{y}) = \left\{ \boldsymbol{c} \in \mathbb{F}_q^n \mid \begin{pmatrix} y_1 & \dots & y_n \\ \vdots & \ddots & \vdots \\ y_1 x_1^{r-1} & \dots & y_n x_n^{r-1} \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} = 0 \right\}.$$

Each row gives m equations. For example, replace

$$(y_1 \quad y_2 \quad \dots \quad y_n) \longleftrightarrow \begin{pmatrix} y_{1,0} & y_{2,0} & \dots & y_{n,0} \\ y_{1,1} & y_{2,1} & \dots & y_{n,1} \\ \vdots & \vdots & \ddots & \vdots \\ y_{1,m-1} & y_{2,m-1} & \dots & y_{n,m-1} \end{pmatrix}$$

where $y_i = y_{i,0} + y_{i,1}\alpha + ... + y_{i,m-1}\alpha^{m-1}$.

Generator matrix of $\mathscr{A}_r(x,y)^{\perp}$ (2)

Denote by

$$\Psi_{\alpha}: \begin{cases} \mathbb{F}_{q^m} & \stackrel{\simeq}{\longrightarrow} \mathbb{F}_q^m \\ z = \sum_{j=0}^{m-1} z_j \alpha^j & \longmapsto (z_0, z_1, \dots, z_{m-1}), \end{cases}$$

and naturally extend it to vectors : $\Psi_{\alpha}: \mathbb{F}_{q^m}^r \stackrel{\simeq}{\longrightarrow} \mathbb{F}_q^{rm}$.

Generator matrix of $\mathscr{A}_r(x,y)^{\perp}$ (2)

Denote by

$$\Psi_{\alpha}: \begin{cases} \mathbb{F}_{q^m} & \xrightarrow{\simeq} \mathbb{F}_q^m \\ z = \sum_{j=0}^{m-1} z_j \alpha^j & \longmapsto (z_0, z_1, \dots, z_{m-1}), \end{cases}$$

and naturally extend it to vectors : $\Psi_{\alpha}: \mathbb{F}_{q^m}^r \stackrel{\simeq}{\longrightarrow} \mathbb{F}_q^{rm}$.

Proposition 9

Let $\operatorname{Vand}_r(\mathbf{x}, \mathbf{y}) = (\mathbf{g_1} | \dots | \mathbf{g_n})$ be a generator matrix of $\operatorname{\mathsf{GRS}}_r(\mathbf{x}, \mathbf{y})$. Then

$$\Psi_{\alpha}(\operatorname{Vand}_{r}(\boldsymbol{x},\boldsymbol{y}))\stackrel{def}{=}(\Psi_{\alpha}(\boldsymbol{g_{1}})|\dots|\Psi_{\alpha}(\boldsymbol{g_{n}}))$$

is a generator matrix of $\mathscr{A}_r(\mathbf{x}, \mathbf{y})^{\perp}$.

Generator matrix of $\mathscr{A}_r(x,y)^{\perp}$ (2)

Denote by

$$\Psi_{\alpha}: \begin{cases} \mathbb{F}_{q^m} & \xrightarrow{\simeq} \mathbb{F}_q^m \\ z = \sum_{j=0}^{m-1} z_j \alpha^j & \longmapsto (z_0, z_1, \dots, z_{m-1}), \end{cases}$$

and naturally extend it to vectors : $\Psi_{\alpha}: \mathbb{F}_{q^m}^r \stackrel{\simeq}{\longrightarrow} \mathbb{F}_q^{rm}$.

Proposition 9

Let $\operatorname{Vand}_r(\mathbf{x}, \mathbf{y}) = (\mathbf{g_1} | \dots | \mathbf{g_n})$ be a generator matrix of $\operatorname{\mathsf{GRS}}_r(\mathbf{x}, \mathbf{y})$. Then

$$\Psi_{\alpha}(\operatorname{Vand}_{r}(\boldsymbol{x},\boldsymbol{y})) \stackrel{def}{=} (\Psi_{\alpha}(\boldsymbol{g_{1}})| \dots |\Psi_{\alpha}(\boldsymbol{g_{n}}))$$

is a generator matrix of $\mathscr{A}_r(\mathbf{x}, \mathbf{y})^{\perp}$.

This will help

- Determine the quadratic hull of a dual alternant code;
- · mount a key recovery attack against alternant codes !

Recovering the structure of an alternant code

Problem (Key recovery problem)

- Input: $H_{\text{pub}} \in \mathbb{F}_q^{rm \times n}$ be a partity-check matrix of $\mathscr{C} = \mathscr{A}_r(\mathbf{x}, \mathbf{y})$;
- Goal: recover $G \in \mathbb{F}_{q^m}^{r \times n}$ a generator matrix of $GRS_r(x, y)$.

Key point: We do not have access to $H_{sec} = \Psi_{\alpha}(G)$.

Instead $H_{\text{pub}} = P \cdot H_{\text{sec}}$ with $P \in GL_{rm}(\mathbb{F}_q)$.

Although $H_{\text{pub}} = \Psi_{\alpha}(G')$, the matrix G' is not a generator matrix of $GRS_r(x, y)$ in general.

In the following...

Let $\mathbf{G} = \operatorname{Vand}_r(\mathbf{x}, \mathbf{y}) \in \mathbb{F}_{q^m}^{r \times n}$ be a generator matrix of $\mathsf{GRS}_r(\mathbf{x}, \mathbf{y})$, $\mathbf{H}_{\mathrm{sec}} = \Psi_\alpha(\mathbf{G})$ and $\mathbf{H}_{\mathrm{pub}} = \mathbf{P} \cdot \mathbf{H}_{\mathrm{sec}}$.

Goal

- Establish a fundamental link between $I_2(G)$ and $I_2(H_{sec})$;
- Deduce interesting properties of $I_2(\mathbf{H}_{\text{pub}})$.

Sketch of answer: $V_2(\mathbf{H}_{sec})$ seems to contain the points $\Psi_{\alpha}(\mathbf{v})$ for $\mathbf{v} \in V_2(\mathbf{G})...$

This leads to the concept of Weil restriction!

Plan of this Section

McEliece cryptosystem

The notion of quadratic hull

Weil restriction

A new attack against high-rate alternant codes

Plan

McEliece cryptosystem

The notion of quadratic hull

Weil restriction

Definition and first properties

Identifying Weil restrictions

A new attack against high-rate alternant codes

Consider the complex circle $\mathcal{X}: z_1^2 + z_2^2 - 1 = 0$.

Consider the complex circle \mathcal{X} : $z_1^2 + z_2^2 - 1 = 0$. Split each variable in real and imaginary parts: $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$.

Consider the complex circle \mathcal{X} : $z_1^2+z_2^2-1=0$. Split each variable in real and imaginary parts:

$$z_1 = x_1 + iy_1, \ z_2 = x_2 + iy_2.$$

Goal

Find algebraic conditions on (x_1, y_1, x_2, y_2) expressing $(x_1 + iy_1, x_2 + iy_2) \in \mathcal{X}$.

Consider the complex circle \mathcal{X} : $z_1^2 + z_2^2 - 1 = 0$. Split each variable in real and imaginary parts:

$$z_1 = x_1 + iy_1, \ z_2 = x_2 + iy_2.$$

Goal

Find algebraic conditions on (x_1, y_1, x_2, y_2) expressing $(x_1 + iy_1, x_2 + iy_2) \in \mathcal{X}$.

Solution: substitute (z_1, z_2) in the defining equation of \mathcal{X} :

$$(x_1 + iy_1, x_2 + iy_2) \in \mathcal{X} \iff (x_1 + iy_1)^2 + (x_2 + iy_2)^2 - 1 = 0.$$

Consider the complex circle \mathcal{X} : $z_1^2 + z_2^2 - 1 = 0$. Split each variable in real and imaginary parts: $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$.

Goal

Find algebraic conditions on (x_1, y_1, x_2, y_2) expressing $(x_1 + iy_1, x_2 + iy_2) \in \mathcal{X}$.

Solution: substitute (z_1, z_2) in the defining equation of \mathcal{X} :

$$(x_1 + iy_1, x_2 + iy_2) \in \mathcal{X} \iff (x_1 + iy_1)^2 + (x_2 + iy_2)^2 - 1 = 0.$$

Now expand and gather the real and imaginary parts:

$$\begin{split} (x_1 + iy_1, x_2 + iy_2) &\in \mathcal{X} \iff x_1^2 - y_1^2 + 2ix_1y_1 + x_2^2 - y_2^2 + 2ix_2y_2 - 1 = 0 \\ &\iff x_1^2 - y_1^2 + x_2^2 - y_2^2 - 1 + i(2x_1y_1 + 2x_2y_2) = 0. \\ &\iff \begin{cases} x_1^2 - y_1^2 + x_2^2 - y_2^2 - 1 = 0 \\ 2x_1y_1 + 2x_2y_2 = 0 \end{cases} \iff \mathcal{Y} = \operatorname{Res}_{\mathbb{C}/\mathbb{R}}(\mathcal{X}) \subset \mathbb{R}^4. \end{split}$$

Formal definition

We work with $\mathbb{F}_{q^m} = \mathbb{F}_q[\alpha]$. Define the two polynomial rings:

$$\mathbf{\textit{R}} = \mathbb{F}_{q^m}[X_0, \dots, X_{r-1}] \text{ and } \mathbf{\textit{S}} = \mathbb{F}_q[x_{i,j} \mid 0 \leqslant i < r, \ j < m].$$

In order to split the variables with respect to α , we introduce

$$\Phi: \begin{cases} \boldsymbol{R} & \longrightarrow \boldsymbol{S} \otimes_{\mathbb{F}_q} \mathbb{F}_{q^m} \\ X_i & \longmapsto \sum_{j < m} \alpha^j x_{i,j}. \end{cases}$$

For all $f \in R$, write $\Phi(f) = \Phi_0(f) + \alpha \Phi_1(f) \dots + \alpha^{m-1} \Phi_{m-1}(f)$ with $\Phi_i(f) \in S$.

Definition 10

Let $I \subset R$ be a prime ideal, and set $V = \mathbb{V}(I)$. We define

$$\operatorname{Res}_{\mathbb{F}_{q^m}/\mathbb{F}_q}(I) \stackrel{\mathsf{def}}{=} \langle \Phi_j(f) \mid f \in I, \ 0 \leqslant j < m \rangle,$$

and we write $\operatorname{Res}_{\mathbb{F}_{q^m}/\mathbb{F}_q}(V) \stackrel{\mathsf{def}}{=} \mathbb{V}(\operatorname{Res}_{\mathbb{F}_{q^m}/\mathbb{F}_q}(I)).$

Elementary properties

Proposition 11

Let $I \subset \mathbf{R}$ be a prime ideal and let $J = \operatorname{Res}_{\mathbb{F}_{a^m}/\mathbb{F}_a}(I)$.

- $\dim J = m \times \dim I$.
- The map

$$\Psi_{\alpha}: \begin{cases} \mathbb{F}_{q^m}^r & \longrightarrow \mathbb{F}_q^{rm} \\ \mathbf{v} = (v_0, \dots, v_{r-1}) & \longmapsto (v_{0,0}, \dots, v_{0,m-1}, \dots, v_{r-1,0}, \dots, v_{r-1,m-1}) \end{cases}$$

induces a natural bijection between $\mathbb{V}_{\mathbb{F}_{q^m}}(I)$ and $\mathbb{V}_{\mathbb{F}_q}(J)$.

Weil restriction and trace codes

Let $\mathscr C$ be an $[n,k]_{q^m}$ -code with generator matrix ${\it G}$ and let ${\it H}_{\rm sec}=\Psi_{\alpha}({\it G})$ be a parity-check matrix of $\mathscr C_{|\mathbb F_q}$. Let also ${\it H}_{\rm pub}={\it P}\cdot{\it H}_{\rm sec}$.

Corollary 12

- $l_2({\color{red} H_{
 m sec}}) \supset {\rm Res}_{\mathbb{F}_q^m/\mathbb{F}_q}(l_2({\color{red} G}))$, or equivalently $V_2({\color{red} H_{
 m sec}}) \subset {\rm Res}_{\mathbb{F}_q^m/\mathbb{F}_q}(l_2({\color{red} G}))$;
- $I_2(\mathbf{H}_{\text{pub}}) \supset \{f^{\mathbf{P}^{-1}} \mid f \in \operatorname{Res}_{\mathbb{F}_{q^m}/\mathbb{F}_q}(I_2(\mathbf{G}))\};$
- $V_2(H_{\text{pub}}) \subset P \cdot \text{Res}_{\mathbb{F}_{q^m}/\mathbb{F}_q}(V_2(G))$.

Natural questions arise:

- When do we have $I_2(\mathbf{H}_{sec}) = \operatorname{Res}_{\mathbb{F}_{q^m}/\mathbb{F}_q}(I_2(\mathbf{G}))$?
- Can we use the Weil restriction to distinguish a (dual) subfield subcode from a random code?
- Which varieties/subspaces are the Weil restriction of another variety/subspace ?

Weil-properness of alternant codes

We provide an answer to the first questions for alternant codes.

Define $G = \operatorname{Vand}_r(x, y)$ and $H_{\text{sec}} = \Psi_{\alpha}(G)$.

Proposition 13

Let
$$\mathscr{C} = \mathscr{A}_r(\mathbf{x}, \mathbf{y})^{\perp}$$
. If

$$r \leqslant q \text{ and } \mathscr{C}^{\star 2} \neq \mathbb{F}_q^n$$

then, by [FGOPT11], $I_2(\mathbf{H}_{sec}) = \operatorname{Res}_{\mathbb{F}_{q^m}/\mathbb{F}_q}(I_2(\mathbf{G}))$.

Remark 14

When $r \leqslant q$, and when

$$n > \binom{rm+1}{2} - m \binom{r-1}{2},$$

heuristic of [FGOPT11] ensures $(\mathscr{A}_r(\mathbf{x},\mathbf{y})^{\perp})^{\star 2} \neq \mathbb{F}_q^n$.

We then talk about Weil-proper alternant codes.

Plan

McEliece cryptosystem

The notion of quadratic hull

Weil restriction

Definition and first properties

Identifying Weil restrictions

A new attack against high-rate alternant codes

The simpler case of vector subspaces (1)

Take a complex line $L = \mathbb{C} \cdot \boldsymbol{u}$ where $\boldsymbol{u} = (z_1 \ z_2)^{\top} \in \mathbb{C}^2$. Observe that

$$L = \left\{ (t_1 + it_2) \cdot \begin{pmatrix} x_1 + iy_1 \\ x_1 + iy_2 \end{pmatrix} \mid (t_1, t_2) \in \mathbb{R}^2 \right\}$$
$$= \left\{ \begin{pmatrix} t_1 x_1 - t_2 y_1 + i(t_1 y_1 + t_2 x_1) \\ t_1 x_2 - t_2 y_2 + i(t_1 y_2 + t_2 x_2) \end{pmatrix} \mid (t_1, t_2) \in \mathbb{R}^2 \right\}.$$

We see that if $\mathcal{P} = \operatorname{Res}_{\mathbb{F}_{q^m}/\mathbb{F}_q}(L)$, then

$$\mathcal{P} = \left\{ egin{pmatrix} t_1 & -t_2 & 0 & 0 \ t_2 & t_1 & 0 & 0 \ 0 & 0 & t_1 & -t_2 \ 0 & 0 & t_2 & t_1 \end{pmatrix} \cdot egin{pmatrix} x_1 \ y_1 \ x_2 \ y_2 \end{pmatrix} \mid (t_1, t_2) \in \mathbb{R}^2
ight\}.$$

The simpler case of vector subspaces (2)

$$\mathcal{P} = \left\{ egin{pmatrix} t_1 & -t_2 & 0 & 0 \ t_2 & t_1 & 0 & 0 \ 0 & 0 & t_1 & -t_2 \ 0 & 0 & t_2 & t_1 \end{pmatrix} \cdot egin{pmatrix} x_1 \ y_1 \ x_2 \ y_2 \end{pmatrix} \mid (t_1, t_2) \in \mathbb{R}^2
ight\}.$$

We see that $\mathcal P$ is invariant under the action of $J_2=\operatorname{Diag}(J,J)$ with $J=\begin{pmatrix}0&-1\\1&0\end{pmatrix}$.

Remark 15

J is the matrix of the \mathbb{R} -linear map $\mu_i: \begin{cases} \mathbb{C} & \longrightarrow \mathbb{C} \\ z & \longmapsto iz \end{cases}$ with respect to the \mathbb{R} -basis (1,i) of \mathbb{C} .

 J_2 -stability of $\mathcal{P} \iff \mathbb{C}$ -linearity of L

General case for vector subspaces

Notation 16

Let **J** be the matrix of the \mathbb{F}_q -linear map

$$\mu_{\alpha}: \begin{cases} \mathbb{F}_{q^m} & \longrightarrow \mathbb{F}_{q^m} \\ x & \longmapsto \alpha x \end{cases}$$

w.r.t. the \mathbb{F}_q -basis $(1, \alpha, \dots, \alpha^{m-1})$ of $\mathbb{F}_{q^m} = \mathbb{F}_q[\alpha]$. We also write $J_r = \text{Diag}(J, \dots, J)$.

Theorem 17

A vector subspace $W \subset \mathbb{F}_q^{rm}$ is a Weil restriction \iff it is J_r -invariant.

 J_r -stability of $W \iff \mathbb{F}_{q^m}$ -linearity of V

Generalization to algebraic varieties

Linear data associated to a variety: tangent spaces !

Definition 18 (Tangent space)

Let $I \subset R = \mathbb{F}_{q^m}[X_0, \dots, X_{r-1}]$ be a prime ideal and $V = \mathbb{V}(I)$. For any \mathbb{F}_{q^m} -rational point $P \in V(\mathbb{F}_{q^m})$, the **tangent space** of V at P is defined by

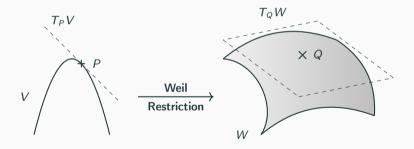
$$T_P V = \left\{ \boldsymbol{h} \in \mathbb{F}_{q^m}^r \mid \forall f \in I, \ \sum_{i < r} h_i \frac{\partial f}{\partial X_i}(P) = 0 \right\}.$$

In practice:
$$I = \langle f_1, \dots, f_N \rangle \implies T_P V = \text{right-kernel } \operatorname{Jac}(f_1, \dots, f_N) = \left(\frac{\partial f_i}{\partial X_j}\right)_{i,j} \text{ at } P.$$

Weil restriction and tangent spaces

Proposition 19

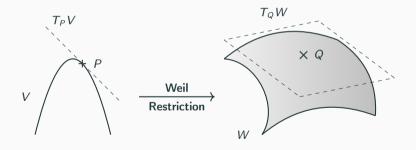
Let
$$W=\mathrm{Res}_{\mathbb{F}_{q^m}/\mathbb{F}_q}(V)$$
, $P\in V(\mathbb{F}_{q^m})$ and $Q=\Psi_{\alpha}(P)\in W(\mathbb{F}_q)$. Then
$$T_QW=\mathrm{Res}_{\mathbb{F}_{q^m}/\mathbb{F}_q}(T_PV).$$



Weil restriction and tangent spaces

Proposition 19

Let
$$W=\mathrm{Res}_{\mathbb{F}_{q^m}/\mathbb{F}_q}(V)$$
, $P\in V(\mathbb{F}_{q^m})$ and $Q=\Psi_{\alpha}(P)\in W(\mathbb{F}_q)$. Then
$$T_QW=\mathrm{Res}_{\mathbb{F}_{q^m}/\mathbb{F}_q}(T_PV).$$



 T_QW is J_r -invariant!

About cryptography

Let $G = \operatorname{Vand}_r(\mathbf{x}, \mathbf{y}) \in \mathbb{F}_{q^m}^{r \times n}$ be a generator matrix of $\mathscr{C} = \operatorname{GRS}_r(\mathbf{x}, \mathbf{y})$ with quadratic hull \mathcal{X} (rational normal curve). If \mathscr{C} is Weil-proper (high-rate regime $+ r \leq q$). then

- All tangent spaces of $V_2(H_{sec})$ are J_r -invariant;
- $H_{\text{pub}} = P \cdot H_{\text{sec}} \implies \text{tangent spaces of } V_2(H_{\text{pub}}) \text{ are invariant under the action of } P \cdot J_r \cdot P^{-1}.$

This provides a distinguisher

Plan of this Section

McEliece cryptosystem

The notion of quadratic hull

Weil restriction

A new attack against high-rate alternant codes

Conclusion

Plan

McEliece cryptosystem

The notion of quadratic hull

Weil restriction

A new attack against high-rate alternant codes

Alternant case, with $r \leqslant q$

Generalizations

Conclusion

The key-recovery problem

Problem

- Input: $H_{\text{pub}} \in \mathbb{F}_q^{rm \times n}$ be a partity-check matrix of $\mathscr{C} = \mathscr{A}_r(\mathbf{x}, \mathbf{y})$;
- Goal: recover $G \in \mathbb{F}_{q^m}^{r \times n}$ a generator matrix of $GRS_r(x, y)$.

Key points:

- We do not have access to $\mathbf{H}_{sec} = \Psi_{\alpha}(\mathbf{G})$;
- $H_{\text{pub}} = \Psi_{\alpha}(G')$ for some G', but this matrix is not a generator-matrix of $GRS_r(x,y)$...

Definition 20

For any vector-subspace $T \subset \mathbb{F}_q^{rm}$, we define the **stabilizer** of T to be

$$\operatorname{St}(T) = \{ \boldsymbol{A} \in \mathbb{F}_q^{rm \times rm} \mid \forall \boldsymbol{v} \in T, \ \boldsymbol{A} \boldsymbol{v}^{\top} \in T \}.$$

Let $\mathscr{C} = \mathscr{A}_r(\mathbf{x}, \mathbf{y})^{\perp}$ be Weil-proper (high rate and $r \leqslant q$), and set $W = V_2(\mathbf{H}_{\text{pub}})$. We have seen that

• For all point $Q \in W$, we have $\mathbb{F}_q[P \cdot J_r \cdot P^{-1}] \subseteq \operatorname{St}(T_Q W)$;

Definition 20

For any vector-subspace $T \subset \mathbb{F}_q^{rm}$, we define the **stabilizer** of T to be

$$\operatorname{St}(T) = \{ \boldsymbol{A} \in \mathbb{F}_q^{rm \times rm} \mid \forall \boldsymbol{v} \in T, \ \boldsymbol{A} \boldsymbol{v}^{\top} \in T \}.$$

Let $\mathscr{C} = \mathscr{A}_r(\mathbf{x}, \mathbf{y})^{\perp}$ be Weil-proper (high rate and $r \leqslant q$), and set $W = V_2(\mathbf{H}_{\text{pub}})$. We have seen that

- For all point $Q \in W$, we have $\mathbb{F}_q[P \cdot J_r \cdot P^{-1}] \subseteq \operatorname{St}(T_Q W)$;
- Better: we have $\mathbb{F}_q[{\color{red} P}\cdot {\color{black} J_r}\cdot {\color{black} P^{-1}}]\subseteq \bigcap_{Q\in W}\mathrm{St}(T_QW);$

Definition 20

For any vector-subspace $T \subset \mathbb{F}_q^{rm}$, we define the **stabilizer** of T to be

$$\operatorname{St}(T) = \{ \boldsymbol{A} \in \mathbb{F}_q^{rm \times rm} \mid \forall \boldsymbol{v} \in T, \ \boldsymbol{A} \boldsymbol{v}^{\top} \in T \}.$$

Let $\mathscr{C} = \mathscr{A}_r(\mathbf{x}, \mathbf{y})^{\perp}$ be Weil-proper (high rate and $r \leqslant q$), and set $W = V_2(\mathbf{H}_{\text{pub}})$. We have seen that

- For all point $Q \in W$, we have $\mathbb{F}_q[P \cdot J_r \cdot P^{-1}] \subseteq \operatorname{St}(T_Q W)$;
- Better: we have $\mathbb{F}_q[\mathbf{P} \cdot \mathbf{J}_r \cdot \mathbf{P}^{-1}] \subseteq \bigcap_{Q \in \mathcal{W}} \operatorname{St}(T_Q W)$;
- Betterer: it seems like $\mathbb{F}_q[P \cdot J_r \cdot P^{-1}] = \bigcap_{Q \in W} \operatorname{St}(T_Q W)$!

Proposition 21

By computing $\bigcap_i \operatorname{St}(T_{Q_i}W)$ for sufficiently many $Q_i \in W$, we get access to $\mathbb{F}_q[P \cdot J_r \cdot P^{-1}]$.

Definition 20

For any vector-subspace $T \subset \mathbb{F}_q^{rm}$, we define the **stabilizer** of T to be

$$\operatorname{St}(T) = \{ \boldsymbol{A} \in \mathbb{F}_q^{rm \times rm} \mid \forall \boldsymbol{v} \in T, \ \boldsymbol{A} \boldsymbol{v}^{\top} \in T \}.$$

Let $\mathscr{C} = \mathscr{A}_r(\mathbf{x}, \mathbf{y})^{\perp}$ be Weil-proper (high rate and $r \leqslant q$), and set $W = V_2(\mathbf{H}_{\text{pub}})$. We have seen that

- For all point $Q \in W$, we have $\mathbb{F}_q[P \cdot J_r \cdot P^{-1}] \subseteq \operatorname{St}(T_Q W)$;
- Better: we have $\mathbb{F}_q[\mathbf{P} \cdot \mathbf{J}_r \cdot \mathbf{P}^{-1}] \subseteq \bigcap_{Q \in \mathcal{W}} \operatorname{St}(T_Q W)$;
- Betterer: it seems like $\mathbb{F}_q[P \cdot J_r \cdot P^{-1}] = \bigcap_{Q \in W} \operatorname{St}(T_Q W)$!

Proposition 21

By computing $\bigcap_i \operatorname{St}(T_{Q_i}W)$ for sufficiently many $Q_i \in W$, we get access to $\mathbb{F}_q[P \cdot J_r \cdot P^{-1}]$.

$$\left[\mathbb{F}_q[\mathbf{P}\cdot\mathbf{J}_r\cdot\mathbf{P}^{-1}]=\mathbf{P}\cdot\mathbb{F}_q[\mathbf{J}_r]\cdot\mathbf{P}^{-1}\simeq\mathbb{F}_{q^m}
ight]$$

Exploit the field structure

Once we have computed $\mathcal{A} \stackrel{\mathsf{def}}{=} \mathbf{P} \cdot \mathbb{F}_q[\mathbf{J}_r] \cdot \mathbf{P}^{-1} \simeq \mathbb{F}_{q^m}$, we may compute some $\mathbf{A} \in \mathcal{A}$ whose minimal polynomial $\Pi_{\mathbf{A}}$ is that of \mathbf{J} , *i.e* that of α .

Proposition 22

- There exists $Q \in GL_{rm}(\mathbb{F}_q)$ such that $J_r = Q \cdot A \cdot Q^{-1}$, and one may compute it;
- There exists $0 \leqslant j < m$ such that $P \cdot J_r \cdot P^{-1} = A^{q^j}$.

As a consequence, $(\mathbf{Q} \cdot \mathbf{P}) \cdot \mathbf{J}_r = \mathbf{J}_r^{q^j} \cdot (\mathbf{Q} \cdot \mathbf{P})$.

Exploit the field structure

Once we have computed $\mathcal{A} \stackrel{\mathsf{def}}{=} \mathbf{P} \cdot \mathbb{F}_q[\mathbf{J}_r] \cdot \mathbf{P}^{-1} \simeq \mathbb{F}_{q^m}$, we may compute some $\mathbf{A} \in \mathcal{A}$ whose minimal polynomial $\Pi_{\mathbf{A}}$ is that of \mathbf{J} , *i.e* that of α .

Proposition 22

- There exists $Q \in GL_{rm}(\mathbb{F}_q)$ such that $J_r = Q \cdot A \cdot Q^{-1}$, and one may compute it;
- There exists $0 \le j < m$ such that $\mathbf{P} \cdot \mathbf{J}_r \cdot \mathbf{P}^{-1} = A^{q^j}$.

As a consequence, $(\mathbf{Q} \cdot \mathbf{P}) \cdot \mathbf{J}_r = \mathbf{J}_r^{q^j} \cdot (\mathbf{Q} \cdot \mathbf{P})$.

Theorem 23

Let $S \in GL_{rm}(\mathbb{F}_q)$. If $S \cdot J_r \cdot S^{-1} = J_r^{q^j}$ for some j, then S preserves Weil restrictions.

Exploit the field structure

Once we have computed $\mathcal{A} \stackrel{\mathsf{def}}{=} \mathbf{P} \cdot \mathbb{F}_q[\mathbf{J}_r] \cdot \mathbf{P}^{-1} \simeq \mathbb{F}_{q^m}$, we may compute some $\mathbf{A} \in \mathcal{A}$ whose minimal polynomial $\Pi_{\mathbf{A}}$ is that of \mathbf{J} , *i.e* that of α .

Proposition 22

- There exists $Q \in GL_{rm}(\mathbb{F}_q)$ such that $J_r = Q \cdot A \cdot Q^{-1}$, and one may compute it;
- There exists $0 \le j < m$ such that $\mathbf{P} \cdot \mathbf{J}_r \cdot \mathbf{P}^{-1} = A^{q^j}$.

As a consequence, $(\mathbf{Q} \cdot \mathbf{P}) \cdot \mathbf{J}_r = \mathbf{J}_r^{q^j} \cdot (\mathbf{Q} \cdot \mathbf{P})$.

Theorem 23

Let $S \in GL_{rm}(\mathbb{F}_q)$. If $S \cdot J_r \cdot S^{-1} = J_r^{q^j}$ for some j, then S preserves Weil restrictions.

In short: $Q \cdot H_{\text{pub}} = (Q \cdot P) \cdot \Psi_{\alpha}(G) = \Psi_{\alpha}(G')$, and G' is a generator matrix of $GRS_r(x^{q^i}, y^{q^i})$!

The attack

Algorithm 1 Recovering x' and y' from H_{pub} assuming Weil-properness

- 1: **Input**: H_{pub} a parity-check matrix of $\mathscr{A}_r(\mathbf{x}, \mathbf{y})$.
- 2: Output: x' and y' such that $\mathscr{C} = \mathscr{A}_r(x', y')$.
- 3: Compute $\emph{I}_2(\emph{\textbf{H}}_{\mathrm{pub}})$, and define $\emph{W}=\emph{V}_2(\emph{\textbf{H}}_{\mathrm{pub}})$
- 4: Compute $A = \mathbf{P} \cdot \mathbb{F}_q[\mathbf{J}_r] \cdot \mathbf{P}^{-1}$ by taking $\bigcap_i \operatorname{St}(T_{Q_i}W)$ for sufficiently many Q_i 's
- 5: Compute $\mathbf{A} \in \mathcal{A}$ such that $\Pi_{\mathbf{A}} = \Pi_{\alpha}$
- 6: Compute $Q \in GL_{rm}(\mathbb{F}_q)$ satisfying $Q \cdot A \cdot Q^{-1} = J_r$
- 7: Compute $m{G}' \in \mathbb{F}_{q^m}^{r imes n}$ such that $m{Q} \cdot m{H}_{ ext{pub}} = \Psi_{lpha}(m{G}')$
- 8: Recover (x', y') using either [SS92] or [GH78]
- 9: return (x', y').

Plan

McEliece cryptosystem

The notion of quadratic hul

Weil restriction

A new attack against high-rate alternant codes

Alternant case, with $r \leqslant q$

Generalizations

Conclusion

Alternant case, r > q

Surprisingly, the attack still works when r > q (but we still need the high-rate regime)

Heuristic 24

Assume r > q and take a point $P \in \mathcal{Y} = V_2(\mathbf{G})$. Let $Q = \Psi_{\alpha}(P)$ and $W = V_2(\Psi_{\alpha}(\mathbf{G}))$. Then

$$T_QW = \operatorname{Res}_{\mathbb{F}_{q^m}/\mathbb{F}_q}(\mathbb{F}_{q^m} \cdot P).$$

Goppa case?

Remark 25

Our attack handles the Goppa case where r < q - 1 in the high-rate regime, as they behave like generic alternant codes.

But unfortunately...

Heuristic 26

Assume $r \ge q-1$ and take a point $P \in \mathcal{Y} = V_2(G)$ where G is a generator matrix of $GRS_r(x, \Gamma(x)^{-1})$. Let $Q = \Psi_{\Omega}(P)$ and $W = V_2(\Psi_{\Omega}(G))$. Then

$$\dim T_Q W = 1.$$

[CFS01] Signature scheme remains unbroken to this day.

Plan of this Section

McEliece cryptosystem

The notion of quadratic hull

Weil restriction

A new attack against high-rate alternant codes

Conclusion

Conclusion and open problems

- Link Duals of subfield-subcodes ←→ Weil restriction;
- A new attack against high-rate:
 - Alternant codes;
 - Goppa codes, with r < q 1;
 - SSAG codes whose degree is strictly inferior to q;
 - SSAG codes with 'generic' divisor.

Future work:

- Understands why the attack still works when r > q;
- Weil-restriction of rational varieties ?

Thank you for your attention.

Computing the stabilizers

Let $T \subset \mathbb{F}_q^{rm}$ be a 2m-dimensional vector space and $\mathbf{A} \in \mathbb{F}_q^{rm \times rm}$. We may see T as a linear code:

$$T = \{ \boldsymbol{m} \cdot \underbrace{\boldsymbol{G}}_{\in \mathbb{F}_q^{2m \times rm}} \mid \boldsymbol{m} \in \mathbb{F}_q^{2m} \} = \{ \boldsymbol{v} \in \mathbb{F}_q^{rm} \mid \underbrace{\boldsymbol{H}}_{\in \mathbb{F}_q^{(m-2m) \times rm}} \cdot \boldsymbol{v}^{\top} = 0 \}.$$

Now notice that: $\forall \mathbf{A} \in \mathbb{F}_q^{rm \times rm}, \ \mathbf{A} \in \operatorname{St}(T) \iff \mathbf{H} \cdot \mathbf{A} \cdot \mathbf{G}^{\top} = 0 \hookrightarrow 2m \times (rm - 2m)$ equations on the $A_{i,j}$'s.

Heuristic 27 (Maybe provable)

Experimental evidence show that as soon as we take at least N distinct points

$$Q_1,\ldots,Q_N\in W=V_2(extbf{ extit{H}}_{ ext{pub}})$$
 where

$$N \stackrel{def}{=} \left[\frac{(rm)^2}{2m(rm-2m)} \right] = \left[\frac{1}{\rho(1-\rho)} \right] \text{ where } \rho = \frac{2}{r},$$

then $\bigcap_{i=1}^N \mathrm{St}(T_{Q_i}W) = \mathbb{F}_q[\mathbf{P}\cdot \mathbf{J}_r\cdot \mathbf{P}^{-1}]$. We may take the columns of $\mathbf{H}_{\mathrm{pub}}$ as the Q_i 's.

We do have access to $\mathbb{F}_q[P \cdot J_r \cdot P^{-1}]$!

On the structure of the stabilizers (1)

Proposition 28

• For $x \in \mathbb{F}_{q^m} = \mathbb{F}_q[\alpha]$, write $x = x_0 + x_1\alpha + \ldots + x_{m-1}\alpha^{m-1}$. Define

$$\mu_{\mathsf{x}}: \begin{cases} \mathbb{F}_{q^m} & \longrightarrow \mathbb{F}_{q^m} \\ y & \longmapsto xy. \end{cases}$$

Then the matrix of μ_x in the basis $(1, \alpha, \dots, \alpha^{m-1})$ is $x_0 \mathbf{I} + x_1 \mathbf{J} + \dots + x_{m-1} \mathbf{J}^{m-1}$.

The map

$$\operatorname{Mat}_{\alpha}: \begin{cases} \mathbb{F}_{q^m} & \longrightarrow \mathbb{F}_q[J] \\ \mathsf{x} & \longmapsto \mathsf{x}_0 I + \mathsf{x}_1 J + \ldots + \mathsf{x}_{m-1} J^{m-1} \end{cases}$$

is an isomorphism of \mathbb{F}_q -algebras.

In the same way, $\mathbb{F}_q[J_r] \simeq \mathbb{F}_{q^m}$ for any integer r (recap: $J_r = \mathsf{Diag}(J, \ldots, J)$).

On the structure of the stabilizers (2)

Notation 29

For $P \in GL_{rm}(\mathbb{F}_q)$, we write

$$C_{\mathbf{P}}: \begin{cases} \mathbb{F}_q^{rm \times rm} & \longrightarrow \mathbb{F}_q^{rm \times rm} \\ \mathbf{M} & \longmapsto \mathbf{P} \cdot \mathbf{M} \cdot \mathbf{P}^{-1}. \end{cases}$$

The map $C_{\mathbf{P}}$ is an **automorphism** of $\mathbb{F}_{q}^{rm \times rm}$.

Corollary 30

Let $W = V_2(\mathbf{H}_{\text{pub}})$. Then

$$\bigcap_{i=1}^{N} \operatorname{St}(T_{Q_i}W) = \mathbf{P} \cdot \mathbb{F}_q[\mathbf{J}_r] \cdot \mathbf{P}^{-1} \simeq \mathbb{F}_{q^m}.$$