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Plan of this Section

McEliece cryptosystem
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The decoding problem

Definition 1 (Linear code)

An [n, k]q-linear code % is a linear subspace of Fg:

€ ={m-G|meFi}={xeF] | H-x =0}.

Problem (Decoding problem)

e Input: € an [n, k]q-code, y = c + e with c € € and |e| = t;

e Goal: recover c.

2/31



The first code-based cryptosystem [McEliece, 1978]

Public key gen. mat. Gyu, € F&*" of an [n, k]q-code €

Private key | Efficient decoding algorithm derived from a structured gen. mat. G, of ¢
Encryption m — mGpu, + e where e & Fg, le| =t

Decryption Performed by a decoding algorithm using the hidden structure of Gpyiv

Figure 1: Generic McEliece cryptosystem
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First example: GRS codes

Definition 2 (GRS codes)

GRS, (x, y) wf {Oaf(x1),...,ynf(xn)) | f € Fq[X]</}. A generator matrix is

i y2 . Yn
Yixi YaX2 e YnXn
Vand,(x,y) =
yixg toyaxgTt oyt

e Private key: (x,y) = Welch-Berlekamp algorithm;
o Public key: G = P - Vand,(x,y) where P & GL,(F,).

[SS92]: This turns out to be insecure...
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Alternant codes

Subfield-subcodes of GRS codes.

Definition 3 (Alternant codes)

____GRS(x,yt Z(x,y) = GRS, (x,y)* A FL.

o dim . (x,y) JELL S

e (x,y) = Decoding algorithm

Definition 4 (Goppa codes)

Let I € Fgm[X] such that degl = r and
Mx)#0,i=1,...,n.

G(x,1) o (x,y), with y; = [(x;)"*.

Figure 2: Alternant code
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Recovering the structure of an alternant code

Problem (Key recovery problem)

o Input: H,,, € FJ"" be a partity-check matrix of € = <7,(x,y);

e Goal: recover G € F5," a generator matrix of GRS, (x, y).
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Plan of this Section

The notion of quadratic hull
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The notion of quadratic hull

Unusual behavior of GRS codes

6/31



The square distinguisher

Definition 5 (Componentwise product)

Given a, b € Iy, axbh® (a1b1, ..., anbn).
If €,2 < Fy are two codes, € x 7 &f Spang {c «d | (c,d) € ¢ x 7}.
2G5

. dim €+1 - .
[CCMZlS]dim%’*Z _ Jmin {( 5 ), n} if ¢ is random,
min{2dim% — 1,n} if € is a GRS code.

Indeed: (yx') * (yx') — (yx*) x (yx') = 0 whenever j +j = k + I.
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Quadratic hull

Let G = (g4]...|g,) € F5*" a gen. mat of € and S = Fg[xu,...,x] = Do Sa-

Definition 6 (Quadratic hull )

o Algebraic view: L(G) % {fe S, | f(g,) =... = f(g,) = O}.

e Geometric view: V5(G) %' {v € F%, Vf € h(G), f(v) = 0}.
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Quadratic hull

Let G = (g4]...|g,) € F5*" a gen. mat of € and S = Fg[xu,...,x] = Do Sa-

Definition 6 (Quadratic hull [2an207)

L ifeS,|f(g)=...=f(g,) =0}

e Geometric view: V5(G) %' {v € F%, Vf € h(G), f(v) = 0}.

Proposition 7

o dim(G) = (“3) — dim%*2.

o Algebraic view: L1(G)
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Quadratic hull

Let G = (gy]...lg,) € F4*" a gen. mat of € and S = Fg[x1,..., %] = Dysp Sa

Definition 6 (Quadratic hull [2an207)

o Algebraic view: (G) = {feS>|f(g,)=...="f(g, =0}

o Geometric view: V5(G) &' {v € F¥ erlz(G), f(v) = 0}.

o dim(G) = (“3) — dim%*2.
Let G' = P - G be another generator matrix of € .

o Alg. b(G) = {fP | fe (G}, where f? L f((xa,...,x)PT).
e Geom. V»(G') ={P-v' | ve Vu(G)}.
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GRS codes and the rational normal curve

Let € = GRS, (x,y) c Fg, and let G = Vand,(x, y).

o I>(G) is spanned by {xixj — xkxi | i +j =k + 1},
o dimL(G) = ("31);
® Vz(G) = {(yvxyzxzyv--wxr_ly) | (X7y) E]Fq X Fq}

The columns of G lie on the rational normal curve !
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The notion of quadratic hull

From GRS codes to alternant codes
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Generator matrix of <7, (x,y)* (1)

Let Fgm = Fy[a]. Since 7 (x,y) = (GRS, (x,y)*) n F3,

i e Yn Gl
o (x,y) =< ceFy | | :|=0
y1><1’71 . yaxi 7t Gh
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Generator matrix of <7, (x,y)* (1)

Let Fgm = Fy[a]. Since 7 (x,y) = (GRS, (x,y)*) n F3,

i e Yn Gl
o (x,y) =< ceFy | | :|=0
gty ) \a

Each row gives m equations. For example, replace

Y10 Y20 Yn,0
Y11 Y21 Yn,1
(}’1 Y2 ... }’n)‘—’ . .
Yim—1 Y2,m—1 .. Yam-1

where yi = yio + yita + ... + Yim1a™ L.
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Generator matrix of <7, (x,y)* (2)

Denote by

Fym = F7
. ) ta q
v, - )

z= ZJ 2 Lziod — (20,21, .1 Zm 1),

and naturally extend it to vectors : W, : Fim —> F".
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Generator matrix of <7, (x,y)* (2)

Denote by

F = 7
v, : A 3 g
z:z = Lziod — (20,21, .1 Zm 1),

and naturally extend it to vectors : W, : Fim —> F".

Let Vand,(x,y) = (g4|...|8,) be a generator matrix of GRS, (x, y). Then

Vo (Vand,(x,y)) £ (Wa(g))l. .. [Va(g,))

is a generator matrix of </ (x, y)*.
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Generator matrix of <7, (x,y)* (2)

Denote by

Fym = F7
o)t q
v, - )

z= ZJ 2 Lziod — (20,21, .1 Zm 1),

and naturally extend it to vectors : W, : Fim —> F".

Let Vand,(x,y) = (g4|...|8,) be a generator matrix of GRS, (x, y). Then
W (Vand, (x,y)) < (Va(g1)] - - [Va(g,))

is a generator matrix of </ (x, y)*

This will help

e Determine the quadratic hull of a dual alternant code;

e mount a key recovery attack against alternant codes !
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Recovering the structure of an alternant code

Problem (Key recovery problem)

o Input: H,., € F;"*" be a partity-check matrix of € = ,(x, y);

e Goal: recover G € F 5" a generator matrix of GRS, (x, y).
Key point: We do not have access to Hyee = Vo (G).

Instead Hpup = P - Heee with P € GLiy (Fy).
Although Hyu, = W, (G'), the matrix G is not a generator matrix of GRS, (x, y) in general.
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In the following...

Let G = Vand,(x,y) € F;,f," be a generator matrix of GRS, (x,y), Hsecc = Vo (G) and Hyy, = P - Hoec.

e Establish a fundamental link between | (G) and h(Hsec);

e Deduce interesting properties of b (Hpup).

Sketch of answer: V>(H,..) seems to contain the points W, (v) for v € V2(G)...

This leads to the concept of Weil restriction !

13/31



Plan of this Section

Weil restriction
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Weil restriction

Definition and first properties
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A first example

Consider the complex circle V' : z2 + 22 —1 = 0.
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A first example

Consider the complex circle X' : zZ + z2 — 1 = 0. Split each variable in real and imaginary parts:

z1=Xx1+ iy1, 22 = X2+ iys.
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A first example

Consider the complex circle X' : zZ + z2 — 1 = 0. Split each variable in real and imaginary parts:

z1 =Xx1+Iiy1, z2 = X2+ iya.

Find algebraic conditions on (x1, y1, 2, y2) expressing (x1 + iy1,x2 + iy2) € X.
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A first example

Consider the complex circle X' : zZ + z2 — 1 = 0. Split each variable in real and imaginary parts:

z1=x1+1Iy1, 22 = X2 + iya.

Find algebraic conditions on (x1, y1, 2, y2) expressing (x1 + iy1,x2 + iy2) € X.

Solution: substitute (z1, z2) in the defining equation of 1"

(X1 + I'_y17x2 + Iyz) eEX (Xl + iy1)2 + (X2 + iy2)2 —1=0.
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A first example

Consider the complex circle X' : zZ + z2 — 1 = 0. Split each variable in real and imaginary parts:
zn=x1+1Iy1, Z2 = X2+ iya.

Find algebraic conditions on (x1, y1, 2, y2) expressing (x1 + iy1,x2 + iy2) € X.
Solution: substitute (z1, z2) in the defining equation of 1"

(x1+ iy, %+ i) e X < (x1 + iy1)2 + (x2 + iy2)2 =1 =0
Now expand and gather the real and imaginary parts:

(x1 +iy1,x2 +iy2) € ¥ = X12—y12+2ix1y1+x22—y22+2ixzy2—1=0
— x127y12+x227y2271+i(2x1y1 + 2xy5) = 0.
X —yi+x3—y;3-1=0

— — Y = Rescr(X) < R
2X1y1 + 2X2y2 =0
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Formal definition

We work with Fgm = Fq[a]. Define the two polynomial rings:
R =F¢n[Xo,...,X,—1] and S =Fg[x;; | 0<i<r, j<m].
In order to split the variables with respect to «, we introduce

R — 5®]Fq Fgm
X; »—>Z ocjx,-,j.

j<m

(O3

For all f € R, write ®(f) = ®o(f) + a®1(f) ... + o™ 1dn_1(F) with &;(f) € S.

Definition 10

Let / = R be a prime ideal, and set V = V(/). We define
Resz /e, (1) & (@;(F) | Fel, 0<j<m),
and we write Resg, 5, (V) wf V(Resg m/r, (1))
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Elementary properties

Proposition 11

Let I = R be a prime ideal and let J = Resy,n/r, (1)

e dimJ=m x dim/.

e The map
v, : a” —E

v = (Vo7...7V,71) '—>(Vo,o7...7Vo,m71, ,V,71,o,...7V,71,m71)

induces a natural bijection between Vi _, (1) and Vg, (J).
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Weil restriction and trace codes

Let ¢ be an [n, k]gm-code with generator matrix G and let Hsec = W, (G) be a parity-check matrix of
%/“Fq. Let also Hyup = P - Haec.

Corollary 12

o I2(Hsec) o Resp m/r, (R(G)), or equivalently V2(Hsec) < Resy,m/r, (R(G));

o b(Hpuw) D {f7 | f € Ress s, ((G))}
° VZ(Hpub) c P'ReS]qu/]Fq(VZ(G))-

Natural questions arise:
o When do we have k(Hsec) = Resr ./, ((G)) ?
e Can we use the Weil restriction to distinguish a (dual) subfield subcode from a random code ?

e Which varieties/subspaces are the Weil restriction of another variety/subspace ?
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Weil-properness of alternant codes

We provide an answer to the first questions for alternant codes.
Define G = Vand,(x,y) and Hscc = Vo (G).

Proposition 13

Let € = a(x,y)*. If
r < q and €**#F7,

then, by [FGOPT11], k(Hsec) = Resp m/m, (R(G)).

(") A7)

heuristic of [FGOPT11] ensures (<, (x,y)*)*? # Fa.

Remark 14
When r < q, and when

We then talk about Weil-proper alternant codes.
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Weil restriction

Identifying Weil restrictions
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The simpler case of vector subspaces (1)

Take a complex line L = C - u where u = (z zz)T € C?. Observe that

L= {(t1+it2)~(

X1+ iy1
x1+ iy2

) | (tl,tz) GRZ}

{(hxl — toyr + i(t1y1 + t2X1)> | (t . ) c Rz}
= 1, L2 .

tixo — tays + i(tiy2 + tax2)

We see that if P = ReSqu/;q(L), then

ty
t2
0
0

—t
5}
0
0

[51
t2

—t
[51

X1

1) (0, 1) e R?
X2

y2
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The simpler case of vector subspaces (2)

ti —to O 0 X1

to t1 0 0 1 2
P = . ti, ) eR

0 0 t1 —t2 X2 ‘ ( ! 2)

0 0 t t1 y2

-1
We see that P is invariant under the action of J, = Diag(J, J) with J = <(1) 0 )

Remark 15

cC —C
J is the matrix of the R-linear map p; : { with respect to the R-basis (1,1) of C.

z +— iz

Jo-stability of P <= C-linearity of L
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General case for vector subspaces

Let J be the matrix of the Fq-linear map

| Fgn — Fgm
Ho -
X — ax

w.r.t. the Fy-basis (1,c,...,a™ ) of Fgm = Fy[a]. We also write J, = Diag(J, ..., J).

Theorem 17

A vector subspace W < g™ is a Weil restriction <= it is J,-invariant.

J,-stability of W <= Fgn-linearity of V
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Generalization to algebraic varieties

Linear data associated to a variety: tangent spaces !

Definition 18 (Tangent space)

Let | € R = Fgm[Xo,...,X,—1] be a prime ideal and V = V(/). For any Fqm-rational point
P e V(Fgm), the tangent space of V at P is defined by

TpV{heIF'm|erl Zh of P) o}.

i<r

In practice: | = {(f1,...,fny => TpV = right-kernel Jac(fy, ..., fy) = ( of ) at P.
iJ
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WEeil restriction and tangent spaces

Proposition 19

Let W = Resg . /v,(V), P € V(Fgn) and Q = Vo (P) € W(Fq). Then

TQ W = ReS]qu/]Fq ( TP V)

ToW

Weil

Restriction
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WEeil restriction and tangent spaces

Proposition 19

Let W = Resg . /v,(V), P € V(Fgn) and Q = Vo (P) € W(Fq). Then

TQ W = ReS]qu/]Fq ( TP V)

ToW

Weil
Restriction

w

ToW is J,-invariant !
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About cryptography

Let G = Vand,(x,y) € Fn" be a generator matrix of 4 = GRS, (x, y) with quadratic hull " (rational
normal curve). If ¢ is Weil-proper (high-rate regime + r < g). then

e All tangent spaces of Va(Hsec) are J,-invariant;

e Hyu, = P+ Hsee = tangent spaces of Vo(H,u1,) are invariant under the action of P - J, - P

This provides a distinguisher
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Plan of this Section

A new attack against high-rate alternant codes
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A new attack against high-rate alternant codes

Alternant case, with r < g
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The key-recovery problem

o Input: H,,, € FJ"*" be a partity-check matrix of € = </,(x,y);

e Goal: recover G € F5," a generator matrix of GRS, (x, y).

Key points:

e We do not have access to Heee = Vo (G);

o Hyu, = W, (G') for some G', but this matrix is not a generator-matrix of GRS, (x, y)...
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Stabilizers

Definition 20

For any vector-subspace T < F7", we define the stabilizer of T to be

St(T)={AeF,"™ |Vve T, Av' € T}.

Let € = 7 (x,y)" be Weil-proper (high rate and r < q), and set W = Va(H,.1,). We have seen that

e For all point Q € W, we have F,[P - J, - P~1] < St(ToW);
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Stabilizers

Definition 20

For any vector-subspace T < F7", we define the stabilizer of T to be

St(T)={AeF,"™ |Vve T, Av' € T}.

Let € = 7 (x,y)" be Weil-proper (high rate and r < q), and set W = Va(H,.1,). We have seen that

e For all point Q € W, we have F,[P - J, - P~1] < St(ToW);
o Better: we have F4[P - J, - P7'] = ooy, St(ToW);
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Stabilizers

Definition 20

For any vector-subspace T < F7", we define the stabilizer of T to be

St(T)={AeF,"™ |Vve T, Av' € T}.

Let € = 7 (x,y)" be Weil-proper (high rate and r < q), and set W = Va(H,.1,). We have seen that

e For all point Q € W, we have F,[P - J, - P~1] < St(ToW);
o Better: we have F4[P - J, - P7'] = ooy, St(ToW);
e Betterer: it seems like Fg[P - J, - P71]= Noew St(TeW) !

Proposition 21

By computing (), St(Tq, W) for sufficiently many Q; € W, we get access to Fq[P-J,- P7'].
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Stabilizers

Definition 20

For any vector-subspace T < F7", we define the stabilizer of T to be

St(T)={AeF,"™ |Vve T, Av' € T}.

Let € = 7 (x,y)" be Weil-proper (high rate and r < q), and set W = Va(H,.1,). We have seen that
e For all point Q € W, we have F,[P - J, - P~1] < St(ToW);
o Better: we have F4[P - J, - P7'] = ooy, St(ToW);
e Betterer: it seems like Fg[P - J, - P71]= Noew St(TeW) !

Proposition 21

By computing (), St(Tq, W) for sufficiently many Q; € W, we get access to Fq[P-J,- P7'].

Fo[P-J, PY] =P -Fy[d,]- P = Fyn

26 /31



Exploit the field structure

Once we have computed A <fp. Fy[J,]- P! ~ Fym, we may compute some A € A whose minimal
polynomial M4 is that of J, i.e that of a.

Proposition 22

o There exists Q € GL.y(Fq) such that J, = Q - A- @', and one may compute it;
o There exists 0 < j < m such that P - J,- P~ = A7

As a consequence, (Q - P)-J, = Jﬁ’j (Q - P).
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Exploit the field structure

Once we have computed A <fp. Fy[J,]- P! ~ Fym, we may compute some A € A whose minimal
polynomial M4 is that of J, i.e that of a.

Proposition 22

o There exists Q € GL.y(Fq) such that J, = Q - A- @', and one may compute it;
o There exists 0 < j < m such that P - J,- P~ = A7

As a consequence, (Q - P)-J, = Jﬁ’j (Q - P).

Theorem 23

Let S e GL,y(Fy). IfS-J,-S71 = Jif‘ for some j, then S preserves Weil restrictions.
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Exploit the field structure

Once we have computed A <fp. Fy[J,]- P! ~ Fym, we may compute some A € A whose minimal
polynomial M4 is that of J, i.e that of a.

Proposition 22

o There exists Q € GL.y(Fq) such that J, = Q - A- @', and one may compute it;
o There exists 0 < j < m such that P - J,- P~ = A7

As a consequence, (Q - P)-J, = Jﬁ’j (Q - P).

Theorem 23

Let S e GL,y(Fy). IfS-J,-S71 = Jif‘ for some j, then S preserves Weil restrictions.

Inshort: Q- Hyup, = (Q - P)-V,(G) =V,(G'), and G’ is a generator matrix of GRS,(qu,y"j) !
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Algorithm 1 Recovering x" and y’ from H,,,;, assuming Weil-properness

1: Input : Hpup, a parity-check matrix of <7 (x,y).

Output : x’ and y’ such that € = &, (x, y').

Compute h(Hpub), and define W = Vo(Hpub)

Compute A = P -TFy[J,]- P! by taking (), St( T, W) for sufficiently many Q;'s
Compute A € A such that M =T,

Compute Q € GL,(F,) satisfying Q - A - Q=4

Compute G’ € F 5" such that @ - Hpu, = W (G)

Recover (x',y’) using either or

© 9o N o9 2 wN

return (x',y’).
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A new attack against high-rate alternant codes

Generalizations
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Alternant case, r > g

Surprisingly, the attack still works when r > g (but we still need the high-rate regime)

Assume r > q and take a point P € ) = V5(G). Let Q = W, (P) and W = V>(V,(G)). Then

TQW = Res]qu/]gq(]qu . P)
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Our attack handles the Goppa case where r < q — 1 in the high-rate regime, as they behave like

generic alternant codes.

But unfortunately...
Heuristic 26
Assume r = q — 1 and take a point P € ) = V>(G) where G is a generator matrix of

GRS, (x,T(x)™"). Let Q = Vo (P) and W = V5(Wo(G)). Then
dim ToW = 1.

[CFS01] Signature scheme remains unbroken to this day.
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Plan of this Section

Conclusion
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Conclusion and open problems

e Link Duals of subfield-subcodes «<— Weil restriction;
e A new attack against high-rate:
e Alternant codes;
e Goppa codes, with r < g — 1;
e SSAG codes whose degree is strictly inferior to g;
e SSAG codes with 'generic’ divisor.
Future work:

e Understands why the attack still works when r > g;

e Weil-restriction of rational varieties ?

Thank you for your attention.
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Computing the stabilizers

Let T c Fy" be a 2m-dimensional vector space and A € Fy"*"™. We may see T as a linear code:
T={m- _G_ | meF2m} = {veF] | M vl =0}
eF2mxm ep{rm=2m) xm
Now notice that: YA€ F;"*™ A€ St(T) « H-A-G' =0<>2m x (rm — 2m) equations on the
A/,J-'s.
Experimental evidence show that as soon as we take at least N distinct points
Q1,...,Qn € W = Vo(Hyu,) where

def

[2m<£;mfzm>w = [ | wherer =7

then N_ St(To W) =F4[P-J,- P71, We may take the columns of H,., as the Q;’s.
i=1 i q I

We do have access to F,[P-J, - P7*] !




On the structure of the stabilizers (1)

Proposition 28

e For x € Fgm = Fy[a], write x = xo + x1 + ... + xm—1a™~*. Define

Fgm —> Fgm
Hox
y = Xy,
Then the matrix of jux in the basis (1,c,...,a™ %) is xol +x1J 4 ... 4+ Xm_1J™ .
e The map
Fon  —> FqlJ]

Mat,, : )
X — xol +x1J + ...+ xm_1J"™

is an isomorphism of F4-algebras.

In the same way, Fq[J,] ~ Fqm for any integer r (recap: J, = Diag(J,...,J)).




On the structure of the stabilizers (2)

For P € GLm(Fy), we write
CP . F;m)(fm _ ]F;mxrm
M — P.-M-P L

The map Cp is an automorphism of

Corollary 30

Let W = Vo(Hpup). Then

rmxrm
Ry,

N
[St(TqW) = P -Fq[J,]- P~ = Fon.

i
i—1
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